3 способа: как сделать плавный пуск для электроинструмента своими руками

Содержание:

Выбор устройства плавного пуска

Для начала посмотрим на шильдик двигателя:

Двигатель насоса, который подключается к схеме плавного пуска

Мощность двигателя – 7,5 кВт, обмотки соединены в схему “треугольник”, номинальный потребляемый при этом ток – 14,7А.

Вот как выглядела система пуска (“жёсткая”):

Система прямого пуска двигателей насосов

Напоминаю, что у нас два двигателя, и запускаются они контакторами 07КМ1 и 07КМ2. Контакторы снабжены блоками дополнительных контактов – для индикации и контроля включения.

В качестве альтернативы было выбрано устройство плавного пуска ABB PSR-25-600. Его максимальный ток – 25 Ампер, так что запас у нас хороший. Особенно, если учесть, что работать придётся в тяжелых условиях – количество пусков/стопов, высокая температура. Фото – в начале статьи.

Вот наклейка на софтстартере с параметрами:

Для чего вообще регулировать скорость вращения диска болгарки?

  1. При резке металла разной толщины, качество работы сильно зависит от скорости вращения диска. Если резать твердый и толстый материал – необходимо поддерживать максимальную скорость вращения. При обработке тонкой жести или мягкого металла (например, алюминия) высокие обороты приведут к оплавлению кромки или быстрому замыливанию рабочей поверхности диска;
  2. Резка и раскрой камня и кафеля на высокой скорости может быть опасной. К тому же диск, который крутится с высокими оборотами, выбивает из материала мелкие куски, делая поверхность реза щербатой. Причем для разных видов камня выбирается разная скорость. Некоторые минералы как раз обрабатываются на высоких оборотах;
  3. Шлифовальные работы и полировка в принципе невозможны без регулирования скорости вращения. Неправильно выставив обороты, можно испортить поверхность, особенно – если это лакокрасочное покрытие на автомобиле или материал с низкой температурой плавления;
  4. Использование дисков разного диаметра автоматически подразумевает обязательное наличие регулятора. Меняя диск Ø115 мм на Ø230 мм, скорость вращения необходимо уменьшить практически вдвое. Да и удержать в руках с 230 мм диском, вращающимся на скорости 10000 об/мин практически нереально;
  5. Полировка каменных и бетонных поверхностей в зависимости от типа используемых коронок производится на разных скоростях. Причем при уменьшении скорости вращения крутящий момент не должен снижаться;
  6. При использовании алмазных дисков необходимо уменьшать количество оборотов, так как от перегрева их поверхность быстро выходит из строя. Разумеется, если ваша болгарка работает только в качестве резака для труб, уголка и профиля – регулятор оборотов не потребуется. А при универсальном и разностороннем применении УШМ он жизненно необходим.

Как правило, бюджетные угловые шлифовальные машины (УШМ), в народе называемые болгаркой, не имеют в своей конструкции регулируемые электронные модули, к которым относятся регулятор оборотов двигателя и плавный пуск. Владельцы таких болгарок со временем начинают понимать, что их отсутствие резко снижает функциональность инструмента. В этом случае можно произвести доработку УШМ, установив на нее самодельные приспособления.

При подаче питания на двигатель шлифмашины происходит скачкообразное повышение оборотов

с нуля до 10 тыс. и более. Кто работал УШМ, хорошо знают, что порой сложно удержать ее в руках при запуске, особенно, если установлен алмазный диск большого диаметра.

Также во время запуска огромная нагрузка прилагается к обмотке ротора и статора электромотора. Поскольку в болгарке установлен коллекторный двигатель, то он стартует в режиме короткого замыкания: электромагнитное поле уже “пытается” провернуть ротор, но он еще некоторое время остается неподвижным, поскольку сила инерции не дает это сделать. В результате в катушках двигателя резко повышается пусковой ток. Несмотря на то, что производитель вложил некий запас прочности для катушек, учитывая перегрузки при старте, рано или поздно изоляция не выдерживает, что приводит к межвитковому замыканию.

Кроме проблем с запуском, отсутствие регулировки оборотов вызывает некоторый дискомфорт. Например, регулятор оборотов болгарки может пригодиться при определенных видах работ

  • при шлифовке или полировке каких-либо поверхностей;
  • при установке инструмента большого диаметра;
  • для резки некоторых материалов.

Кроме того, при обдирочных работах корщетками велика вероятность заклинивания проволоки в какой-либо щели. Если обороты шпинделя были большими, то болгарку может просто вырвать из рук.

Если к УШМ подключить регулятор мощности (оборотов) с модулем плавного пуска, то все вышеописанные проблемы исчезнут, увеличится срок службы аппарата и повысится безопасность его использования.

Принцип работы

Главный минус электродвигателей асинхронного типа – это то, что момент силы на валу пропорционален квадрату напряжения, которое приложено к электродвигателю. Это создает сильные рывки при запусках и в момент прекращения работы, что также повышает значения индукционного тока.

Устройства плавного пуска могут быть механическими и электрическими, а также комбинированными сочетая в себе положительные черты обоих устройств.

Механические устройства плавного пуска работают по принципу противодействия резкому увеличению оборотов электродвигателя влияя на его ротор механическим способом при помощи тормозных колодок, различных муфт, противовесов, магнитных блокираторов и прочих механизмов. Такие механизмы в последнее время применяются не часто, так как есть более совершенные устройства электрического управления.

Электрические УПП постепенно повышают ток или напряжение от опорного уровня до максимального, что позволяет плавно наращивать обороты электродвигателя и снизить нагрузки и пусковые токи. Чаще всего электрические устройства плавного пуска управляются электронным способом при помощи компьютерных систем или электронных приборов, что позволяет изменять параметры запуска и контролировать динамические характеристики. Мягкие пускатели позволяют изменять режимы работы электродвигателя в зависимости от приложенной нагрузки и позволяют реализовать ту или иную зависимость между скоростью вращения вала и напряжением.

Принцип работы электрических устройств основывается на двух методах:

  1. Метод ограничения тока в обмотке ротора – реализуется при помощи катушек, соединенных по схеме «звезда»;
  2. Метод ограничения напряжения и тока в статоре (при помощи тиристоров, симисторов или реостата).

По способу регулировки также различают одно-, двух и трехфазные устройства. УПП с регулировкой напряжения по одной фазе применяют для оборудования до 10 кВт, положительные моменты при таком регулировании – это снижение динамических ударов и рывков при старте, негативные – несимметричная нагрузка при запуске и большие пусковые токи. Мягкие пускатели с регулировкой по двум фазам позволяют снизить пусковые токи и нагрев двигателя при старте и используются в условиях среднетяжелого пуска. Трехфазные устройства плавного пуска значительно снижают пусковые токи и позволяют плавно останавливать электродвигатель, а также обеспечивать аварийное отключение. Такие устройства применяют при тяжелом пуске со значительной нагрузкой, а также с частыми включениями/отключениями двигателя.

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже, чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

Моделирование и результаты измерений

Предложенная схема выполнена на 13-мкм CMOS-технологии китайской фирмы по производству электроники SMIC. Сравнительные результаты моделирования показаны на рис. 6. Графики, приведенные на рис

6а, — это результат моделирования при работе на импульсах малой скважности. Очевидно, что при этом всплески тока все еще имеются

Ток индуктивности будет превышать свое номинальное значение даже спустя несколько циклов. Но на рис. 6б мы видим изменение скважности импульсов и убеждаемся в том, что выбросы тока эффективно контролируются. Результаты моделирования соответствуют теоретическому анализу.

DC/DC-преобразователь со схемой мягкого старта был выполнен на 0,13-мкм технологии CMOS SMIC. Микрография преобразователя представлена на рис. 7. Площадь предложенной в данной статье схемы составляет лишь 0,006 мм2. Входное напряжение преобразователя равно 3,3 В, а выходное — 1,5 В.

В статье описана встроенная цепь мягкого старта, состоящая из цепи подавления перерегулирования и цепи подавления выбросов тока. Цепь подавления перерегулирования генерирует плавно возрастающее напряжение, которое может эффективно подавлять превышения выходного напряжения

Цепь подавления выбросов при включении, использующая изменение скважности импульсов, эффективно справляется с выбросами тока

Рис. 8 иллюстрирует напряжение, измеренное на выходе конвертера, и ток индуктивности во время мягкого старта без использования нагрузки (8а), а также с использованием нагрузки (8б). Экспериментальные данные соответствуют результатам анализа, которые не вызывали всплеска напряжения и тока. Время мягкого старта составляет всего лишь 43,5 мкс.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Как сделать блок пуска для электроинструмента

Существует достаточно много вариантов самостоятельного оборудования болгарки устройством плавного пуска. Некоторые из них представлены в авторских видео.

Блок пуска на базе микросхемы LM358

В следующем видео автор делится опытом самостоятельного изготовления платы блока плавного пуска по схеме, взятой из интернета, на базе микросхемы LM358. Корпус для платы автор изготовил из коробочки из-под шампуня, что говорит о богатой фантазии мастеров самодеятельного творчества. Автор не просто слепо скопировал схему из интернета, а доработал с заменой характеристик некоторых ее элементов: транзисторов, диодов, резисторов. Радиатор для охлаждения полупроводниковых приборов взят из магнитофона. Для того, чтобы была возможность разместить блок плавного пуска внутри корпуса болгарки, а не как в случае предложенного варианта, разработана плата меньшего размера.

Технология работ по изготовлению блока пуска

Автор следующего видео подробно описывает приемы работ, применяемые комплектующие и вспомогательные технологические материалы для изготовления устройства плавного пуска. Здесь в качестве базового элемента взята микросхема к1182. Технология не рассчитана на применение в качестве основы печатной платы, автор называет такую сборку технологией «навесного монтажа». При таком производстве работ кроме пайки применяется крепление отдельных элементов с помощью крепежных изделий, например, так крепится симистор к теплоотводу. Готовый блок пуска не универсален для всех болгарок. На двух отдельно взятых автором УШМ они выходили на режим за ощутимо разный промежуток времени.

Один из вариантов компоновки самодельного блока пуска

В качестве исходного варианта автор следующего видео выбрал известную в интернете сборку с микросхемой LM358.Так как собранный пусковой блок не поместился внутри корпуса болгарки, автор «упаковал» внутрь лишь симистор с радиатором, по причине хороших условий охлаждения от колеса вентилятора болгарки. Остальную часть блока вместе с микросхемой закрепил на корпусе УШМ.

Использование утюга в качестве дополнительной нагрузки для снижения оборотов болгарки

Этот способ не относится конкретно к теме плавного пуска болгарки. Однако, для понимания принципа действия электронного устройства диммер, который используется для регулировки мощности (или количества оборотов) болгарки вполне приемлем. В следующем видео утюг забирает определенную мощность у УШМ, тем самым снижая ее обороты.

Типовую схему блока пуска следует дорабатывать для каждого отдельного электроинструмента

Автор следующего видео рассказывает как оборудовал свою бытовую болгарку устройством плавного пуска для увеличения срока эксплуатации.

Важно: схема может отлично работать для регулировки яркости лампы, но для необходимого функционирования болгарки при пуске быть неспособной выполнять задачу. Для эффективной работы ее следует «настроить», а именно подобрать нужные величины резисторов, емкостей конденсаторов и возможно изменить характеристики полупроводниковых приборов.. https://www.youtube.com/embed/-_-tAsrUyCM

Как приспособить в болгарке штатный диммер для регулировки оборотов

В следующем видео автор доработал кнопку включения (сделал ее подпружиненной) с целью использования возможностей покупного диммера для регулировки оборотов болгарки. После включения болгарки перемещением кнопки устанавливается требуемый режим оборотов. Диммер фиксирует этот режим и при повторном включении производится его установка.

Устройство плавного пуска электродвигателя насоса

Устройство плавного пуска для насоса с использованием преобразователя частоты осуществляет следующие операции это:

  1. Осуществление плавного пуска и торможения насосного агрегата.
  2. Производство автоматического коммутирования в зависимости от показателей уровня и параметров давления жидкости.
  3. Защиту агрегата от «сухого хода», то есть без жидкости.
  4. Защита агрегата при критическом снижении параметров напряжения.
  5. Осуществление защитных действий от перенапряжения на входе преобразователя.
  6. Сигнализирует о включении, отключении агрегата, а также при аварии.
  7. Осуществляет местный обогрев.

Рис. 7. Устройство плавного пуска схема принципиальная, для автоматизации работы погружного насоса с поддержкой давления в полном автоматическом режиме

Подключение электродвигателя осуществляется от контактов U,V,W преобразующего частотного устройства. Пусковая кнопка SB2 вызывает срабатывание реле К1 через ее контактную группу происходит соединение вводов STF и PS частотного преобразователя, который производит плавный запуск электрического насоса, который осуществляется по заложенному программному обеспечению, включенному в настройку устройства.

Датчик определяющий давление ВР1 запитан от ввода преобразователя, делает возможной наличие обратной связи в цепи стабилизирующей давление. Работа этой системы происходит при обеспечении ПИД-регулятора. Потенциометр К1 или частотный преобразователь выполняют функцию по поддержанию заданных параметров давления. Насосный агрегата, при появлении «сухого» хода, должен отключаться для зашиты, в этом случае, контакты 7-8 в цепи катушки реле К3 замыкаются, отключение происходит при срабатывании датчика «сухого» хода подключенного от реле сопротивления А2 . Реле К2 осуществляет защитную функцию по отключению электродвигателя агрегата при аварии. При аварии происходит включение лампыНL1, лампа НL2 зажигается после срабатывания датчика реагирующего на понижение водяного уровня, на недопустимое значение.

Термореле ВК1 осуществляет включение подогрева шкафа управления контактором КМ1, электронагревателей ЕК1 и ЕК2. Защита устройства от тока короткого замыкания и перегруза производится автоматом QF1.

Плавный Пуск и Бесконтактный реверс DC-электродвигателя

Сегодня рассмотрим довольно простую схему устройства управления двигателем постоянного тока, которая позволяет осуществлять его плавный запуск и останов, а также менять направление вращения без использования механических или релейных переключателей. Применение такая схема может найти самое широкое, это и робототехника, и различные станки, или механизмы, использующие двунаправленное механическое вращение.

В качестве интерфейса управления человек-машина здесь выступает манипулятор в основе которого лежит обычный переменный резистор (потенциометр), это может быть, например, так называемый « джойстик », который находясь в среднем положении останавливает вращение, а при крайних — плавно запускает электродвигатель в прямом и обратном направлении.

Сразу обозначу с какими электродвигателями может работать эта схема, в плане мощности. На схеме представлен вариант для 12-ти вольтового электродвигателя, питание электродвигателя и схемы управления общее. Мощность ограничена способностью транзисторов силового H- моста рассеять выделяемую тепловую энергию, т.к. они работают в крайних положениях манипулятора в линейном режиме. При мощности электродвигателя 320 Вт , силовой H -мост должен будет рассеять около 50 Вт , что вполне приемлемо для корпуса TO-220 .

Схему условно можно разделить на 4 функциональных части: силовой мост ( H-bridge ) через который запитан электродвигатель; компараторы напряжений DA1.3 и DA1.4 с которых управляется мост; генератор треугольного напряжения DA1.2 ; узел установки напряжения смещения

Работа силового моста, в « буржуинском » наименовании « H-bridge », подробно описана во многих технических источниках. Напомню, что при вращении электродвигателя, одновременно работают только два транзистора из противоположных плеч, например, VT1 и VT4 . Для смены направления вращения, VT1 и VT4 необходимо закрыть, а VT2 и VT3 открыть.

Управляются пары транзисторов моста через два компаратора DA1.3 и DA1.4 . Управляющее напряжение на их выходах при среднем положении резистора R2 противоположное: DA1.4+12B , DA1.3 — -12В — пары транзисторов моста закрыты, двигатель остановлен. При крайних положениях R2 , напряжение с одного из компараторов станет близким к нулю, что позволит открыться соответствующей паре транзисторов.

Опорное напряжение для компараторов берётся с цепи R7R8R9 на прямой вход DA1.4 и инверсный DA1.3 . На два других входа поступает пилообразное напряжение с частотой

270 Гц , амплитудой около и постоянной составляющей от 1 до с генератора на DA1.2. Постоянная составляющая регулируется как раз потенциометром R2 через DA1.1 . Делитель R7R8R9 рассчитан таким образом, чтобы в промежуточных состояниях резистора R2 от середины до максимального значения и минимального, напряжение с выходов одного из компараторов прежде чем стать близким к нулю модулируется частотой генератора DA1.2 , и как итог в зависимости от уровня постоянной составляющей (напряжения смещения) с DA1.1 принимает форму ШИМ . Это и позволяет плавно запускать и останавливать электродвигатель.

Печатная плата показана на рисунке сверху. Теплоотвод от транзисторов должен быть рассчитан на рассеивание тепловой энергии, в зависимости от мощности электродвигателя. Напомню, что при использовании электродвигателя 12В , 320 Вт , она составит 50 Вт .

Источник

Устройства для болгарок на 800 Вт

Болгарки на 800 Вт работают с пускателями низкой частоты. Симисторы довольно часто применяются на 15 А. Если говорить про схему моделей, то стоит отметить, что у них используются расширительные транзисторы, у которых пропускная способность тока стартует от 45 мк. Конденсаторы используются с фильтрами и без них, а емкость у элементов равняется не более 3 пФ. Также стоит отметить, что пускатели отличаются по чувствительности.

Если рассматривать профессиональные болгарки, то для них подходят модификации на 400 мВ. При этом проводимость тока может быть низкой. Также существуют устройства с переменными транзисторами. Они быстро прогреваются, но не способны поддерживать большие обороты болгарки, а проводимость тока у них составляет около 4 мк. Если говорить про другие параметры, то номинальное напряжение стартует от 230 В. Минимальная частота у моделей с широкополосными симисторами составляет 55 Гц.

Схема плавного пуска электродвигателя болгарки своими руками

У всех кто пользуется болгаркой не один год, она ломалась. Поначалу каждый мастер пытался отремонтировать шлифовальную машинку сверкающую искрами самостоятельно, надеясь, что она заработает после замены щёток. Обычно после такой попытки, сломанный инструмент остается лежать на полке с прогоревшими обмотками. А на замену покупается новая болгарка.

Дрели, шуруповёрты, перфораторы, фрезеры в обязательном порядке оборудованы регулятором набора оборотов. Некоторые так называемые калибровочные шлифмашинки также снабжаются регулятором, а обычные болгарки имеют только кнопку включения.

Маломощные болгарки производители не усложняют дополнительными схемами преднамеренно, ведь такой электроинструмент должен стоить дешево. Понятно конечно, что срок службы недорого инструмента всегда короче, чем у более дорогого профессионального.

Самую простую болгарку можно модернизировать, так что у неё перестанут повреждаться редуктор и обмоточные провода якоря. Эти неприятности преимущественно происходят при резком, другими словами, ударном пуске болгарки.

Вся модернизация заключается всего лишь в сборке электронной схемы и закреплении её в коробке. В отдельном коробке, потому что в ручке шлифмашинки очень мало места.

Проверенная, рабочая схема выложена ниже. Она первоначально предназначалась для регулировки накала ламп, то есть для работы на активную нагрузку. Её главное достоинство ? простота.

  1. Изюминкой устройства плавного пуска, принципиальную схему которого вы видите, является микросхема К1182ПМ1Р. Эта микросхема узкоспециализированная, отечественного производства.
  2. Время разгона можно увеличить, выбрав конденсатор С3 большей емкости. Во время заряжания этого конденсатора, электродвигатель набирает обороты до максимума.
  3. Не нужно ставить взамен резистора R1 переменное сопротивление. Резистор сопротивлением 68 кОм оптимально подобран для этой схемы. При такой настройке можно плавно запустить болгарку мощностью от 600 до 1500 Вт.
  4. Если собираетесь собрать регулятор мощности, тогда нужно заменить резистор R1 переменным сопротивлением. Сопротивление в 100 кОм, и больше, не занижает напряжение на выходе. Замкнув ножки микросхемы накоротко, можно вовсе выключить подключенную болгарку.
  5. Вставив в силовую цепь семистор VS1 типа ТС-122-25, то есть на 25А, можно плавно запускать практически любую доступную в продаже шлифмашинку, мощностью от 600 до 2700 Вт. И остается большой запас по мощности на случай заклинивания шлифмашинки. Для подключения болгарок мощностью до 1500 Вт, достаточно импортных семисторов BT139, BT140. Эти менее мощные электронные ключи дешевле.

Семистор в приведенной выше схеме полностью не открывается, он отрезает около 15В сетевого напряжения. Такое падения напряжения никак не сказывается на работе болгарки. Но при нагреве семистора, обороты подключенного инструмента сильно снижаются. Эта проблема решается установкой радиатора.

У этой простой схемы есть ещё один недостаток – несовместимость её с установленным в инструмент регулятором оборотов.

Собранную схему нужно запрятать в коробок из пластмассы. Корпус из изоляционного материала важен, ведь нужно обезопасить себя от сетевого напряжения. В магазине электротоваров можно купить распределительную коробку.

К коробке прикручивается розетка и подключается кабель с вилкой, что делает эту конструкцию внешне похожей на удлинитель.

Если позволяет опыт и есть желание, можно собрать более сложную схему плавного пуска. Приведенная ниже принципиальная схема является стандартной для модуля XS–12. Этот модуль устанавливается в электроинструмент при заводском производстве.

Если нужно менять обороты подключенного электродвигателя, тогда схема усложняется: устанавливается подстроечный, на 100 кОм, и регулировочный резистор на 50 кОм. А можно просто и грубо внедрить переменник на 470 кОм между резистором 47 кОм и диодом.

Параллельно конденсатору С2 желательно подсоединить резистор сопротивлением 1 МОм (на приведенной ниже схеме он не показан).

Напряжение питания микросхемы LM358 находится в пределах от 5 до 35В. Напряжение в цепи питания не превышает 25В. Поэтому можно обойтись и без дополнительно стабилитрона DZ.

Какую бы вы схему плавного пуска ни собрали, никогда не включайте подключенный к ней инструмент под нагрузкой. Любой плавный пуск можно сжечь, если торопиться. Подождите пока болгарка раскрутиться, а затем работайте.

Способы пуска асинхронных электродвигателей

Для запуска асинхронных двигателей используется разные методы. На практике наибольшее распространение получили следующие способы: Б.

  • Изменение конструкции электродвигателей (роторы с глубокими пазами, типа “двойная беличья клетка”).
  • Прямой пуск.
  • Запуск на пониженном напряжении.
  • Частотный пуск.

Двигатели специальной конструкции существенно дороже обычных электрических машин, что сильно ограничивает их применение.

Прямой запуск

Самая простая схема пуска асинхронных электрических машин с короткозамкнутым ротором – непосредственное подключение к сети. Подача напряжения на статорные обмотки осуществляется замыканием силовых контактов магнитного пускателя или контактора.

При прямом пуске электрической машины момент силы на валу значительно меньше номинального. Кроме того, запуск на полном напряжении вызывает броски тока и снижение напряжения. Прямой запуск применяется:

  • При низкой мощности электрической машины.
  • Для технологического оборудования, не нуждающегося в плавном разгоне.
  • Для механизмов с запуском без нагрузки.

Такой способ непригоден для приводов инерционного оборудования, устройств нетребовательных к величине пускового момента, при ограниченной мощности электросети.

Пуск на пониженном напряжении

Запуск асинхронных электрических машин на сниженном напряжении реализуется при помощи нескольких схем:

Переключением обмоток статора “звезда-треугольник”.
Подключением через трансформатор.
Включением в цепь обмоток статора пусковых резисторов или реакторов.

Принцип действия первой схемы основан на пуске электрической машины при подключении обмоток “звездой”. После разгона двигателя коммутационные аппараты переключают их на “треугольник”. Этим достигается 3-х кратное снижение пускового тока.

При этом пусковой момент на валу также снижается более чем на 30%. Кроме того, преждевременное переключение также вызывает скачки тока до величин, возникающих при прямом запуске. Такой способ также непригоден для инерционного оборудования и установок, запускаемых под нагрузкой.

Для устранения недостатков электродвигателей с короткозамкнутым ротором также применяют автотрансформаторные схемы пуска.

При этом устройство для преобразования напряжения включают последовательно в цепь обмоток электрической машины. Эта схема обеспечивает плавный разгон и уменьшение пускового тока. Через автотрансформаторы подключают приводы мощных установок и оборудования со значительным моментом сопротивления.

Высокая стоимость элементов схемы, скачок тока при переходе на полное напряжение ограничивают ее применение.

Широко применяются также реакторные и резистивные схемы пуска. Для снижения напряжения к обмоткам последовательно подключают резисторы или катушки, обладающие реактивным сопротивлением. Запуск осуществляется при включении в цепь последовательно включенных элементов с активным или индуктивным сопротивлением.

При разгоне двигателей реакторы и пусковые сопротивления постепенно шунтируются и выключаются из цепи. Недостатком этого метода является высокая стоимость оборудования, значительно сниженный пусковой момент.

Частотный пуск

Такой способ старта и разгона основан на зависимости момента и скорости вращения вала электродвигателя от частоты питающего напряжения на обмотках. Для изменения этой характеристики применяют частотные преобразователи. Запуск через ПЧ решает все проблемы старта и разгона асинхронного электродвигателя. Однако, эти устройства имеют высокую цену, большие габариты, а также являются источником высших гармоник.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector